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S1. Schematics of the U-Net architecture for chondrocyte segmentation.  

Here we introduce the image preparation, chondrocyte detection/segmentation, and post-
processing steps using U-Net based convolutional neural networks as shown in Fig. S1. The 
details are described below. 

Image preparation. Before segmentation, three major steps of preprocessing were performed 
on raw images. First, original SHG images in grayscale were inverted to set the intensity of 
cellular areas to high values. Second, the inverted images were filtered with opening/closing 
morphological operations for background removal and edge sharpening. This preprocess step 
improved the overall performance (Dice parameters) of cell segmentation. Lastly, images and 
related image masks were converted from the TIFF image format to the NPY (used in Python) 
numerical format before being input into the deep learning program. The input image set was 
randomly split into the training (3200 images) and test (800 images) sets with a ratio of 8:2. 
Among the 3200 training imaginges, 640 images were used as validation images to confirm 
the best performance of the trained model. 

U-Net chondrocyte detection and segmentation. The output of U-Net model was a series of 
binary masks, each of which contained only one cellular area, as shown in Figure S1(A). The 
cell detection algorithm was the weighted loss categorical cross-entropy as a loss function in 
deep learning and optimization. By using the predicted value of categorical cross-entropy, the 
U-Net model identified N number of cellular areas. The architecture of the U-Net model is 
shown in Figure S1(B), and typical loss curves for training and validation are shown in Figure 
S1(C). To confirm the highest IoU of segmentation, the outputs of the U-Net model were 
compared with the test/validation sets while varying the network. The U-Net network used 
the following parameters: batch size (16), kernel size (3*3 down convolution and 2*2 up 
convolution), specified activation filter (32, 64, 128, 256, and 512), specified loss function 
(binary crossentropy) and controlled epoch loop number (100).  

Post-processing. Two steps are proceeded on the segmentation output. First, separated cell 
clusters of TPAF/SHG images were cropped using the segmented masks from the U-Net 
model. Cropped cell clusters were RGB images containing only cells for multivariate 
classification. Second, each segmented region of interest (ROI) was saved for final viability 
labeling with the outline of chondrocytes.  

S2. Schematics of AlexNet architecture for chondrocyte multivariate classification 

Here, we introduce the image preprocessing, chondrocyte multivariate classification, and 
post-processing steps using AlexNet based convolutional neural networks, as shown in Fig S2. 
The details are described below. 



Preprocessing. The segmented clusters of TPAF/SHG images were pasted in black-grounded 
images with the size of 100×100 pixels. Then, images were resized to 256×256 pixels to build 
the training and testing sets. The training set was augmented with image rotation at 45o, 90o, 
135o, 180o, 225o, 270o, and 315o These images with related image categorical IDs were 
converted from image TIFF format to numerical NPY format NPY for the data input. This 
image data set contains 8280 cells with 5904 live cells among them. The input image set was 
randomly split into the training/validation sets (6624 cells in total with 4724 live cells) and 
test sets (1656 cells in total with 1180 live cells) with a ratio of 8:2. Furthermore, a validation 
set, containing 1324 cells in total with 944 live cells, was used to confirm the best 
performance of the trained model. Different segmentation algorithms have different 
segmentation results. Using UW, UN, WS, and ATB, the total number of sub-images 
segmented were 6256, 5072, 4384, and 3344, respectively. Fig. S3 summarizes the number of 
sub-images that contain different numbers of cells or different numbers of live cells in ground 
truths obtained by using different segmentation methods.  

CNN chondrocyte multivariate classification. AlexNet convolutional neural network was 
used in the classification. As shown in Figure S2(B), this network included three convolution 
layers and two inner product layers. Following each convolution layer, a max-pooling and 
non-linear ReLU layer downsized the feature map gradually. A TPAF/SHG image with 
256×256×3 pixels, similar to the one shown in Figure S2(A), was the input. The output layer 
output the probability of each category for an input image. Two independent CNNs were 
implemented for performing two 1D classifications with five categories (0, 1, 2, 3 and 4), one 
for the live cell number, and the other for the total cell number of input images in Fig. S2(A). 
The two independently trained  AlexNet models with loss curves in Figure S2(C) were saved 
and loaded for categorical prediction and optimization. To confirm the highest accuracy of 
classification, the outputs of AlexNet models were compared with the test/validation sets 
while varying the networks. The AlexNet networks used the following parameters: batch size 

(64), kernel size (4*4), number of convolution kernels (32), specified activation filter (relu), 

specified loss function (categorical crossentropy) and controlled epoch loop number (100).  

Post-processing. There are two ways to show the results of viability assessment: viability 
ratio and automated labelling of cartilage images. First, live/total cell classifications 
determined the viability ratio of the cartilage TPAF/SHG images for viability assessment. 
Secondly, live/total cell classifications of each segmented cluster were saved for final 
viability labelling with pseudo colors (red circles labeled dead cells, green circles labeled live 
cells, yellow circles labeled clusters of live and dead cells , magenta circles labeled clusters of 
non-cells), as shown in Fig. 7. 

S3. Imaging microscope and sample holder 

Immediately after euthanasia, the whole hind leg tibias male Sprague-Dawley rats were 
excised. The cartilage surfaces were exposed while kept intact on the long bone. The bone 
was held stable with a customized clamp (Fig. S4(C)) while resting in a glass-bottomed petri 
dish and immersed in Dulbecco’s Phosphate-buffered Saline (DPBS, Corning Inc.) for 
microscopy imaging. The cartilage tissues were imaged with a commercial multiphoton 
optical microscope (Fig. 4(A); Olympus FV1200) equipped with a femtosecond pulsed laser 
(Mai Tai DeepSee, Newport Corp.) for two-photon excited fluorescence and SHG imaging. 
Two GaAsP photomultiplier tubes (PMTs) were equipped for optical signal detection in two 
channels simultaneously. For two-photon excited fluorescence microscopy, the wavelength of 



excitation laser was tuned at 740 nm, which excites the endogenous fluorescent coenzymes of 
NAD(P)H and FPs at the same time. The fluorescence was collected with a 30×, silicone oil 
immersion Objective Lens (UPLSAPO30XS, Olympus UIS2) with a NA of 1.05 and then 
separated at 570 nm with a dichroic mirror (DM). Subsequently, the fluorescence passed 
through a violet (420—460 nm) and red (575—630 nm) bandpass filter and detected in two 
channels respectively. The laser wavelength was tuned to 860 nm for SHG imaging and 
detected with the violet channel. The frame size of acquired images were kept at 1024 × 1024 
pixels, corresponding to a field of view of 423 μm × 423 μm. The pixel dwell time was set at 
2-μs with a Kalman filter integration of 2 lines. The z-stack images were collected at 1 
μm/slide for 50-slides starting from the surface downward into the tissue.  



 

Fig. S1. U-N
(N=4000) of c
model. (B) Ne
Loss curves o

Net architectu
cartilage SHG 
eural networks
f training and v

ure for chondr
images and tra

s of U-Net mo
validation for t

rocyte segmen
aining output (N
del using pixe
the U-Net segm

ntation. (A) T
N=4000) of ar

elwise loss wei
mentation mod

 

Typical trainin
rtificial masks 
ights segmenta

del.

ng input 
of U-Net 

ation. (C) 
 



 

Fig. S2. Sche
Typical trainin
of two separa
classification.
classification 
classifications

ematic of Alex
ng input of car

ate AlexNet mo
 (C) Loss c
models: one f

s. 

xNet architectu
rtilage SHG/TP
odels. (B) Neu
curves of trai
for total numb

ure for chondro
PAF images an
ural networks o
ining and va

ber of cells an
 

ocyte multivar
nd training ou
of AlexNet mo

alidation of tw
nd the other fo

riate classifica
utput of artifici
odel using mu
two separate 
or number of l

 

ation. (A) 
al counts 

ultivariate 
AlexNet 

live cells 



 

Fig. S3. Porti
totalin the dat
more than 4 
using differen
segmented im

 

Fig. S4. (A) T
exposed cartil
tibias during i

ions of sub-im
taset used as g
were found. (A
nt segmentati

mage using diffe

The multiphoto
lage intact on a
imaging. 

mages containin
ground truth fo
A) The total c
on methods.
erent segmenta

n laser scannin
a tibia condyle

ng different n
or the chondro
cell number ob
(B) The live

ation methods.

ng microscope 
e. (C) A photo 

number (0-4) o
ocyte classifica
btained from e

e cell number

used in this stu
of the custom

of live cells or
ation. No cell 
each segmente
r obtained fro

udy. (B) A pho
mized clamp for

 

r cells in 
numbers 

ed image 
om each 

 

oto of the 
r holding 


